Mitochondrial targeting increases specific activity of a heterologous valine assimilation pathway in Saccharomyces cerevisiae

نویسندگان

  • Kevin V. Solomon
  • Elisa Ovadia
  • Fujio Yu
  • Wataru Mizunashi
  • Michelle A. O’Malley
چکیده

Bio-based isobutantol is a sustainable 'drop in' substitute for petroleum-based fuels. However, well-studied production routes, such as the Ehrlich pathway, have yet to be commercialized despite more than a century of research. The more versatile bacterial valine catabolism may be a competitive alternate route producing not only an isobutanol precursor but several carboxylic acids with applications as biomonomers, and building blocks for other advanced biofuels. Here, we transfer the first two committed steps of the pathway from pathogenic Pseudomonas aeruginosa PAO1 to yeast to evaluate their activity in a safer model organism. Genes encoding the heteroligomeric branched chain keto-acid dehydrogenase (BCKAD; bkdA1, bkdA2, bkdB, lpdV), and the homooligomeric acyl-CoA dehydrogenase (ACD; acd1) were tagged with fluorescence epitopes and targeted for expression in either the mitochondria or cytoplasm of S. cerevisiae. We verified the localization of our constructs with confocal fluorescence microscopy before measuring the activity of tag-free constructs. Despite reduced heterologous expression of mitochondria-targeted enzymes, their specific activities were significantly improved with total enzyme activities up to 138% greater than those of enzymes expressed in the cytoplasm. In total, our results demonstrate that the choice of protein localization in yeast has significant impact on heterologous activity, and suggests a new path forward for isobutanol production.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cytosolic re-localization and optimization of valine synthesis and catabolism enables inseased isobutanol production with the yeast Saccharomyces cerevisiae

BACKGROUND The branched chain alcohol isobutanol exhibits superior physicochemical properties as an alternative biofuel. The yeast Saccharomyces cerevisiae naturally produces low amounts of isobutanol as a by-product during fermentations, resulting from the catabolism of valine. As S. cerevisiae is widely used in industrial applications and can easily be modified by genetic engineering, this mi...

متن کامل

Cisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae

Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...

متن کامل

Functional expression of a heterologous nickel-dependent, ATP-independent urease in Saccharomyces cerevisiae.

In microbial processes for production of proteins, biomass and nitrogen-containing commodity chemicals, ATP requirements for nitrogen assimilation affect product yields on the energy producing substrate. In Saccharomyces cerevisiae, a current host for heterologous protein production and potential platform for production of nitrogen-containing chemicals, uptake and assimilation of ammonium requi...

متن کامل

Characteristics of Saccharomyces cerevisiae isolated from fruits and humus: Their suitability for bread making

The objectives of this study were to clarify whether the wild yeast isolated from fruits and humus is suitable forbread making. Using colony PCR, assimilation of carbohydrate and 18S rRNA sequencing, seven strains fromamong 70 samples were identified as Saccharomyces cerevisiae. The ethanol and CO2 production by the 10-2 wild yeast strain were highest among the strains. The pH and utilized gluc...

متن کامل

N-hypermannose glycosylation disruption enhances recombinant protein production by regulating secretory pathway and cell wall integrity in Saccharomyces cerevisiae

Saccharomyces cerevisiae is a robust host for heterologous protein expression. The efficient expression of cellulases in S. cerevisiae is important for the consolidated bioprocess that directly converts lignocellulose into valuable products. However, heterologous proteins are often N-hyperglycosylated in S. cerevisiae, which may affect protein activity. In this study, the expression of three he...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 3  شماره 

صفحات  -

تاریخ انتشار 2016